首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127628篇
  免费   6783篇
  国内免费   11469篇
  2023年   1386篇
  2022年   1698篇
  2021年   2692篇
  2020年   2801篇
  2019年   4406篇
  2018年   3287篇
  2017年   2679篇
  2016年   3207篇
  2015年   4543篇
  2014年   6530篇
  2013年   8692篇
  2012年   5516篇
  2011年   7334篇
  2010年   5522篇
  2009年   5992篇
  2008年   6525篇
  2007年   6827篇
  2006年   6453篇
  2005年   5782篇
  2004年   5031篇
  2003年   4479篇
  2002年   4079篇
  2001年   3155篇
  2000年   2746篇
  1999年   2627篇
  1998年   2362篇
  1997年   2024篇
  1996年   1860篇
  1995年   2213篇
  1994年   2057篇
  1993年   1779篇
  1992年   1694篇
  1991年   1425篇
  1990年   1286篇
  1989年   1151篇
  1988年   1149篇
  1987年   1109篇
  1986年   770篇
  1985年   1205篇
  1984年   1602篇
  1983年   1136篇
  1982年   1504篇
  1981年   1066篇
  1980年   1048篇
  1979年   976篇
  1978年   559篇
  1977年   460篇
  1976年   372篇
  1975年   267篇
  1973年   284篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Inflammation is a key instigator of the immune responses that drive atherosclerosis and allograft rejection. IL-1α, a powerful cytokine that activates both innate and adaptive immunity, induces vessel inflammation after release from necrotic vascular smooth muscle cells (VSMCs). Similarly, IL-1α released from endothelial cells (ECs) damaged during transplant drives allograft rejection. However, IL-1α requires cleavage for full cytokine activity, and what controls cleavage in necrotic ECs is currently unknown. We find that ECs have very low levels of IL-1α activity upon necrosis. However, TNFα or IL-1 induces significant levels of active IL-1α in EC necrotic lysates without alteration in protein levels. Increased activity requires cleavage of IL-1α by calpain to the more active mature form. Immunofluorescence and proximity ligation assays show that IL-1α associates with interleukin-1 receptor-2, and this association is decreased by TNFα or IL-1 and requires caspase activity. Thus, TNFα or IL-1 treatment of ECs leads to caspase proteolytic activity that cleaves interleukin-1 receptor-2, allowing IL-1α dissociation and subsequent processing by calpain. Importantly, ECs could be primed by IL-1α from adjacent damaged VSMCs, and necrotic ECs could activate neighboring normal ECs and VSMCs, causing them to release inflammatory cytokines and up-regulate adhesion molecules, thus amplifying inflammation. These data unravel the molecular mechanisms and interplay between damaged ECs and VSMCs that lead to activation of IL-1α and, thus, initiation of adaptive responses that cause graft rejection.  相似文献   
5.
Signaling at nerve cell synapses is a key determinant of proper brain function, and synaptic defects—or synaptopathies—are at the basis of many neurological and psychiatric disorders. In key areas of the mammalian brain, such as the hippocampus or the basolateral amygdala, the clustering of the scaffolding protein Gephyrin and of γ-aminobutyric acid type A receptors at inhibitory neuronal synapses is critically dependent upon the brain-specific guanine nucleotide exchange factor Collybistin (Cb). Accordingly, it was discovered recently that an R290H missense mutation in the diffuse B-cell lymphoma homology domain of Cb, which carries the guanine nucleotide exchange factor activity, leads to epilepsy and intellectual disability in human patients. In the present study, we determined the mechanism by which the CbR290H mutation perturbs inhibitory synapse formation and causes brain dysfunction. Based on a combination of biochemical, cell biological, and molecular dynamics simulation approaches, we demonstrate that the R290H mutation alters the strength of intramolecular interactions between the diffuse B-cell lymphoma homology domain and the pleckstrin homology domain of Cb. This defect reduces the phosphatidylinositol 3-phosphate binding affinity of Cb, which limits its normal synaptogenic activity. Our data indicate that impairment of the membrane lipid binding activity of Cb and a consequent defect in inhibitory synapse maturation represent a likely molecular pathomechanism of epilepsy and mental retardation in humans.  相似文献   
6.
Toxocariasis is a soil-transmitted helminthozoonosis due to infection of humans by larvae of Toxocara canis. The disease could produce cognitive and behavioral disturbances especially in children. Meanwhile, in our modern era, the incidence of immunosuppression has been progressively increasing due to increased incidence of malignancy as well as increased use of immunosuppressive agents. The present study aimed at comparing some of the pathological and immunological alterations in the brain of normal and immunosuppressed mice experimentally infected with T. canis. Therefore, 180 Swiss albino mice were divided into 4 groups including normal (control) group, immunocompetent T. canis-infected group, immunosuppressed group (control), and immunosuppressed infected group. Infected mice were subjected to larval counts in the brain, and the brains from all mice were assessed for histopathological changes, astrogliosis, and IL-5 mRNA expression levels in brain tissues. The results showed that under immunosuppression, there were significant increase in brain larval counts, significant enhancement of reactive gliosis, and significant reduction in IL-5 mRNA expression. All these changes were maximal in the chronic stage of infection. In conclusion, the immunopathological alterations in the brains of infected animals were progressive over time, and were exaggerated under the effect of immunosuppression as did the intensity of cerebral infection.  相似文献   
7.
8.
Many insects undergo diapause to survive adverse seasons. Although the mechanism of diapause induction is the subject of extensive study, that of diapause termination remains poorly understood. In the present study, we show the endocrine processes leading to the termination of pupal diapause in Mamestra brassicae. Diapause of this insect is terminated if the pupae are exposed to a low temperature for several weeks. During this period, the prothoracic glands (PGs) of pupae acquire the potential to secrete sufficient ecdysteroids necessary for inducing adult development. The main endocrine changes observed under the low temperature conditions are: (i) the increase in activity of the PGs in two steps; (ii) the increase in responsiveness of the glands to prothoracicotropic hormone (PTTH); and (iii) two‐step increase in PTTH gene expression in the brain. The timing of the first and second increases in PG activity roughly coincides with that of the two steps of increase in PTTH gene expression, and the timing of the increase in the responsiveness of the PGs to PTTH coincides with the second, larger increase in PTTH gene expression. The ablation of the PGs prior to cooling pupae does not affect the increase in PTTH gene expression, whereas brain removal results in a failure to increase PG activity, strongly suggesting that PTTH is the master regulator of diapause development and termination.  相似文献   
9.
Aminoacyl-tRNA synthetases catalyze ATP-dependent covalent coupling of cognate amino acids and tRNAs for ribosomal protein synthesis. Escherichia coli isoleucyl-tRNA synthetase (IleRS) exploits both the tRNA-dependent pre- and post-transfer editing pathways to minimize errors in translation. However, the molecular mechanisms by which tRNAIle organizes the synthetic site to enhance pre-transfer editing, an idiosyncratic feature of IleRS, remains elusive. Here we show that tRNAIle affects both the synthetic and editing reactions localized within the IleRS synthetic site. In a complex with cognate tRNA, IleRS exhibits a 10-fold faster aminoacyl-AMP hydrolysis and a 10-fold drop in amino acid affinity relative to the free enzyme. Remarkably, the specificity against non-cognate valine was not improved by the presence of tRNA in either of these processes. Instead, amino acid specificity is determined by the protein component per se, whereas the tRNA promotes catalytic performance of the synthetic site, bringing about less error-prone and kinetically optimized isoleucyl-tRNAIle synthesis under cellular conditions. Finally, the extent to which tRNAIle modulates activation and pre-transfer editing is independent of the intactness of its 3′-end. This finding decouples aminoacylation and pre-transfer editing within the IleRS synthetic site and further demonstrates that the A76 hydroxyl groups participate in post-transfer editing only. The data are consistent with a model whereby the 3′-end of the tRNA remains free to sample different positions within the IleRS·tRNA complex, whereas the fine-tuning of the synthetic site is attained via conformational rearrangement of the enzyme through the interactions with the remaining parts of the tRNA body.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号